Developing a rule-based method for identifying researchers on Twitter: The case of vaccine discussions
SND-ID: snd1117-1. Version: 1.0. DOI: https://doi.org/10.5878/akmc-va16
Download data
Citation
Creator/Principal investigator(s)
Björn Ekström
Research principal
University of Borås - Akademin för bibliotek, information, pedagogik och IT
Principal's reference number
FO2017/23
Description
Method development for Twitter biography classification concerning occurrences of academics, academically related groups and individuals, media, other groups and members of the general public. Written in the Python programming language.
Language
Unit of analysis
Population
Twitter users
Time Method
Sampling procedure
Time period(s) investigated
2018-06-01 – 2019-10-31
Data format / data structure
Responsible department/unit
Akademin för bibliotek, information, pedagogik och IT
Research area
Language technology (computational linguistics) (Standard för svensk indelning av forskningsämnen 2011)
Social sciences (Standard för svensk indelning av forskningsämnen 2011)
Information studies (Standard för svensk indelning av forskningsämnen 2011)
Higher and further education (CESSDA Topic Classification)
Information society (CESSDA Topic Classification)
Language and linguistics (CESSDA Topic Classification)
Keywords
Ekström, B. (2019). Developing a rule-based method for identifying researchers on Twitter: The case of vaccine discussions. Poster abstract accepted to ISSI, 17th International Society of Scientometrics and Informetrics Conference, Rome, 2-5 September.
If you have published anything based on these data, please notify us with a reference to your publication(s). If you are responsible for the catalogue entry, you can update the metadata/data description in DORIS.