Automatic Detection of Ditches and Natural Streams from Digital Elevation Models Using Deep Learning
SND-ID: 2024-57. Version: 1. DOI: https://doi.org/10.5878/jrex-z325
Download all files
Citation
Creator/Principal investigator(s)
Mariana dos Santos Toledo Busarello - Swedish University of Agricultural Sciences, Department of Forest Ecology and Management
William Lidberg - Swedish University of Agricultural Sciences, Department of Forest Ecology and Management
Anneli Ågren - Swedish University of Agricultural Sciences, Department of Forest Ecology and Management
Florian Westphal - Jönköping University, Department of Computing
Research principal
Principal's reference number
SLU.seksko.2024.4.4.IÄ-1
Description
Data contains personal data
Yes
Type of personal data
Names of user accounts indicating who performed certain steps of the data processing
Language
Data format / data structure
Geographic spread
Geographic location: Sweden
Geographic description: The data covers 12 study areas spread across Sweden, containing information related to channel type for small water channels. More information with the precise locations can be found at the README.html file.
Research area
Geosciences, multidisciplinary (Standard för svensk indelning av forskningsämnen 2011)
Physical geography (Standard för svensk indelning av forskningsämnen 2011)
Soil science (Standard för svensk indelning av forskningsämnen 2011)
Imagery / base maps / earth cover (INSPIRE topic categories)
Geoscientific information (INSPIRE topic categories)
Elevation (INSPIRE topic categories)
Location (INSPIRE topic categories)
Inland waters (INSPIRE topic categories)
Paul, S. S., Maher Hasselquist, E., Jarefjäll, A., & Ågren, A. (2023). Virtual landscape-scale restoration of altered channels helps us understand the extent of impacts to guide future ecosystem management. In Ambio (Vol. 52, Issue 1, pp. 182–194). https://doi.org/10.1007/s13280-022-01770-8
URN:
urn:nbn:se:uu:diva-494403
DOI:
https://doi.org/10.1007/s13280-022-01770-8
SwePub:
oai:DiVA.org:uu-494403
Lidberg, W., Paul, S. S., Westphal, F., Richter, K.-F., Lavesson, N., Melniks, R., Ivanovs, J., Ciesielski, M., Leinonen, A., & Ågren, A. M. (2023). Mapping drainage ditches in forested landscapes using deep learning and aerial laser scanning. In Journal of irrigation and drainage engineering (No. 04022051; Vol. 149, Issue 3). https://doi.org/10.1061/jidedh.ireng-9796
DOI:
https://doi.org/10.1061/jidedh.ireng-9796
URN:
urn:nbn:se:umu:diva-201888
SwePub:
oai:DiVA.org:umu-201888
If you have published anything based on these data, please notify us with a reference to your publication(s). If you are responsible for the catalogue entry, you can update the metadata/data description in DORIS.