
Automatic Detection of Ditches and Natural Streams

from Digital Elevation Models Using Deep Learning

Using topographic indices derived from the Swedish Aerial Laser Scanning data, we have trained deep

learning models to detect ditches and stream channels. The chosen architecture was UNet. The

topographic indices were used individually and in combination.

This repository has scripts to create labels, calculate topographic indices, train and evaluate the

models, and apply them to detect the location of channels (inference). It also contains the highest-

ranking models for the 0.5 m resolution.

Different datasets were used to train the models and analyze the impact of different labeling methods.

The dataset “Channels” combines ditches and streams under the same label. Dataset “Ditches” only

has the pixels corresponding to ditches. Dataset “Streams” only contains the pixels that correspond to

the stream channels. Dataset “Streams&Ditches” has ditches and streams labeled separately. All of

them can be created using the code present in this repository.

This is how the models performed according to their Matthew's Correlation Coefficient (MCC):

These are examples of inference from the models with the highest MCC:

Data

- Channel network as a polyline shapefile

- Aerial Laser Scanning data

The data for this study comes from 12 study areas spread across Sweden, with different characteristics

regarding land use and forest cover, among others. The laser data comes from Lantmäteriet, and it was

used to create the digital elevation models from which the topographic indices were calculated.

The data is originally organized into tiles of 2500 m x 2500 m, later being split into chips of 250 m x

250 m.

https://www.lantmateriet.se/globalassets/geodata/geodataprodukter/hojddata/pb_laserdata_nedladdning_skog.pdf

Creating the labels

1. laser_to_DEM.py

Creates the digital elevation model from the aerial laser data.

2. create_rasterlines-py

Turns the polyline channels from the shapefiles into lines in raster data. The raster

pixels can be 0 (background), 1 (ditches), or 2 (streams).

3. separating_channels.py

Splits the raster data between channel type, creating a copy with only ditches and one

with only streams.

4. buffering_raster.py

Creates a buffer of 1.5 m around each channel in the raster data, to represent the mean

channel width of 3 m.

5. calculating_hpmf.py

Calculates the High-Pass Median Filter from the digital elevation model.

6. lessthan_reclassification.py

Reclassifies the HPMF values based on the threshold of -0.075, with 0 for values above

it, and 1 for those below it.

7. multiplying_rasters.py

Multiplies the reclassified rasters and the buffered ones, and outputs the pixels that are

within the buffer zone.

8. majority_filtering.py

Smooths the multiplied output.

9. combining_rasters_finaloutput.py

Combines the rasters with the separated ditches and streams into a single one.

10. dataset_channels_labels.py

Creates the dataset Channels.

11. dataset_ditches_labels.py

Creates the dataset Ditches.

12. dataset_streams_labels.py

Creates the dataset Streams.

Topographic indices

- calculating_hillshade.py

Calculates the hillshade from the digital elevation model.

- calculating_slope.py

Calculates the slope from the digital elevation model.

- calculating_svf.py

Calculates the Sky-view Factor

 Creating the input chips

1. splitting_rasters.py

Splits the tiles into chips to be used as training data.

2. selecting_labeled_chips_by_threshold.py

Selects the dataset chips that are over the established threshold.

3. selecting_ti_chips.py

Selects the chips of topographic indices based on the previously selected dataset chips.

4. splitting_training_data.py

Splits the dataset and topographic indices chips between training (80%) and testing

(20%).

Semantic segmentation

- train.py

- evaluate.py

- inference_unet.py

