
JSON Dataset of Simulated Building Heat Control
for System of Systems Interoperability

Jacob Nilsson

March 21, 2022

Abstract

Machine learning based interoperability solutions are currently hard
to test due to a lack of standardized datasets and testbeds. This techni-
cal report contains the details of an openly available simulation model
and data set, which can be used by interoperability researchers to test,
reproduce, and compare models and approaches.

1 Introduction
System of Systems (SoS) interoperability based on machine learning is cur-
rently in its infancy [1, 2]. Currently, a lack of open datasets and testbeds
makes it hard to test and evaluate approaches. In this technical report, I
present a dataset based on a heating simulation of a building. The data
generated is not as complex as real data, but I hope to inspire more inter-
operability researchers to share their data openly as well.

1.1 SoS Interoperability

There is a push for industrial systems to share information at a greater
extent to increase efficiency, reduce waste, and provide greater customer
support, called the fourth industrial revolution [3]. Central to the fourth
industrial revolution is the use of Service-Oriented Architectures (SOAs)
and SoSs, whose techniques could in principle allow for data sharing between
heterogeneous and autonomous systems. Such information sharing is called
interoperability [4], which comes in many different forms [5].

The dataset presented in this report allows users to test semantic and op-
erational interoperability. Semantic interoperability refers to systems’ and

1



A11 A12 A13

A24A23A22A21

A14
OO

OO

OO

Figure 1: Room layout of simulation. The temperatures of rooms A11 – A24
are controlled by heating and cooling units that communicate using SenML-
JSON. The outside temperature, OO, is taken from real temperature data.

operators’ ability to interpret and share the meaning of data, and opera-
tional interoperability refers to systems’ ability to cooperate towards goals
individual subsystems cannot complete by themselves.

2 Simulation Environment
The data provided is generated from a thermodynamic simulation of a build-
ing. The building, shown in Figure 1, contains eight rooms whose temper-
ature is controlled, and the outside “room” whose temperature is not con-
trolled. Heat is only exchanged through the walls of the rooms, the ground
and ceiling are perfectly heat insulated. Each room, except the outside,
contains a heater system and cooler system. Each heater and cooler system
in turn consists of a temperature sensor, PI controller, and actuator. These
systems communicate through JSON-SenML messages1, but the message
formats are different between the heater and cooler systems.

2.1 Thermodynamic Simulation

The simulation environment consists of eight rooms organized as two rows of
four, with heat exchanged between rooms that shares sides (Figure 1). Each
room is also influenced by an outside temperature which is unaffected by
the building temperature. The outside temperatures’ effect on the rooms’
temperatures is doubled for the corner rooms, as they share two sides with

1SenML IETF rfc: https://datatracker.ietf.org/doc/html/rfc9100

2



(a)

Controller

Actuator

Sensor

Controller

Actuator

Sensor

Controller

Actuator

Sensor

Controller

Actuator

Sensor

(b)

Figure 2: Simulation diagram. The temperature in each room is point-like
(black sphere) and exchanges heat with the neighboring rooms according
to Equation (1), illustrated in panel (a). The temperature is also affected
by the output of the heater and cooler systems according to Equation (2),
illustrated in panel (b).

the outside. The rooms are simulated as point-like temperatures according
to

T r
t = T r

t−∆t − κ ∆t
∑

n∈N (r)

∆T r
t−∆t(n), (1)

where T r
t denotes the temperature of room r at time t, κ the constant of heat

transfer between rooms, ∆t the simulation step time in seconds, n ∈ N (r)
are the neighbors n of room r, and ∆T r

t−1(n) the temperature difference
between rooms t and n at time t−1. This temperature exchange is illustrated
by the arrows in Figure 2a. The values of the constants κ, ∆t, and the room
heat capacity C can be found in Table 1. The Outside temperature is real
data taken from Swedish Meteorologigal and Hydrological Institute (SMHI)2

with permission.

2.2 Control Model

To regulate the rooms, they each have a heating regulator and cooling reg-
ulator, each controlled by two separate PI control loops with different con-
stants, see the values of KP and KI in Table 1. The constants differ by
orders of magnitude because the heating actuators expects the actuation
value in watts, whereas the expects the actuation as a value between 0 and
1, which will be multiplied by the maximum power Pmax, which is the same
for both heating and cooling units. Further, the regulation is set up so

2https://www.smhi.se/en/about-smhi

3



Table 1: Values of simulation constants.

Property Symbol Value

Time step size ∆t 10 s
Room Heat capacity C 46× 103 J/K
Room Heat transfer rate κ 10−4W/(m ·K)

Proportional constant heating Kheat
P 40W/K

Proportional constant cooling Kcool
P 0.1K−1

Integration constant cooling Kheat
I 1W/(s ·K)

Integration constant heating Kcool
I 0.01 (s ·K)−1

Actuator maximum power output Pmax 1500W

that the heating unit will have zero actuation when the cooling unit has a
non-zero actuation, and vice versa. To achive some variability in the data,
each rooms will randomly set a new actuation point, uniformly in the span
of 280.15 to 310.15 K, at a random time according to a Poisson(3600 [s])
distribution from the last change. This means that on average every room
sets a target temperature once every hour, but the exact time will be slightly
different, introducing more variance in the data. The heat given to a room
r by an actuator is governed by the following equation:

T r
t = T r

t−∆t +
yr,coolt + yr,heatt

C
(2)

where yr,unitt is the power output of the cooling and heating actuators in
watts in room r at time t. To note here is that the the cooling actuation
yr,coolt is always negative, simulating a non-realistic heat sink.

2.3 Control Loops

The full control loop is executed at every time step and is illustrated in
Figure 2b:

1. Store the previous temperatures Tt−1.

2. Generate temperature messages for each unit in each room (green ar-
rows).

3. (a) Controllers requests the current temperature in their correspond-
ing room (green circles).

4



(b) Sensors respond with the temperature messages.

4. Update control and generate controller messages.

(a) If it is time, update the random setpoints before updating control.

5. Controllers send the temperature messages to the actuators (cyan and
orange circles).

6. Actuators update the actuations yt (cyan and orange arrows)

7. Room temperatures updated.

The last step combines Equation 1 and Equation 2 into the full temperature
update equation:

T r
t = T r

t−∆t − κ ∆t

 ∑
n∈N (r)

∆T r
t−∆t(n)−

yr,coolt + yr,heatt

C

 (3)

3 Generated Dataset
The data comes in two semicolon-separated (;) csv files, training.csv
and test.csv. The train/test split is not random; training data comes
from the first 80% of simulated timesteps, and the test data is the last 20%.
There is no specific validation dataset, the validation data should instead
be randomly selected from the training data.

The simulation runs for as many time steps as there are outside tem-
perature values available. The original SMHI data only samples once every
hour, which we linearly interpolate to get one temperature sample every ten
seconds. The data saved at each time step consists of 34 JSON messages
(four per room and two temperature readings from the outside), 9 temper-
ature values (one per room and outside), 8 setpoint values, and 8 actuator
outputs. The data associated with each of those 34 JSON-messages is stored
as a single row in the tables. This means that much data is duplicated, a
chose made to make it easier to use the data.

The messages are all JSON-SenML, but the structure is different between
the heating and cooling systems, and the actuator and sensor uses different
labels. Four example messages can be found in Figure 3, where the messages
from each unit represents the same information, encoded by the different
colors.

5



3.1 File structure

Each data file has the following columns: timeline, message, room_name,
system, unit, temperature, setpoint, actuation, previous_actuation_1, pre-
vious_actuation_2, previous_actuation_3.

timeline (float)

The timeline column is the time elapsed since the start of the simulation in
seconds.

message (string)

Generated JSON message.

room_name (string)

Name of room where the data point was generated. One of 9 possible values:
OO, A11, A12, A13, A14, A21, A22, A23, or A24.

Temperature sensor Controller

Heat-
ing
system

[{
"n":"A13_temp_sensor",
"t":60,
"u":"K",
"v":292.34...

}]

[{
"n":"A13_heater",
"t":60,
"u":"W",
"v":0

}]

Cool-
ing
system

[
{"bn":"temp_sensor","bt":60},
{"u":"Cel","v":19.199...},
{"u":"Lon","v":"2"},
{"u":"Lat","v":"0"}

]

[
{"bn":"cooler","bt":60},
{"u":"/","v":0.254...},
{"u":"Lon","v":"2"},
{"u":"Lat","v":"0"}

]

Figure 3: Example messages from the simulation. The top row shows mes-
sages from the heating system, and the bottom row messages from the cool-
ing system. The left column shows messages from the temperature sensors
and the right column messages from the controller. The parts containing the
same information are highlighted in red (location) and green (temperature).

6



system (string)

System, i.e., temperature sensor or controller, where the data point was
generated. One of 2 possible values: temp_sensor or control.

unit (string)

Unit, i.e., heater or cooler, where the data point was generated. One of 2
possible values: heater or cooler.

temperature (float)

Temperature setpoint at the time the data point was generated.

actuation (float)

Actuator output at the time the data point was generated.

previous_actuation_1 (float)

Actuator output in the previous timestep.

previous_actuation_2 (float)

Actuator output two timesteps ago.

previous_actuation_3 (float)

Actuator output three timesteps ago.

References
[1] J. Nilsson and F. Sandin, “Semantic interoperability in industry 4.0:

Survey of recent developments and outlook,” in 2018 IEEE 16th inter-
national conference on industrial informatics (INDIN). IEEE, 2018,
pp. 127–132.

[2] J. Nilsson, J. Delsing, and F. Sandin, “Autoencoder alignment approach
to run-time interoperability for system of systems engineering,” in 2020
IEEE 24th International Conference on Intelligent Engineering Systems
(INES). IEEE, 2020, pp. 139–144.

7



[3] IERC, AC, “IoT semantic interoperability: Research challenges, best
practices, recommendations and next steps,” European Commission In-
formation Society and Media, Tech. Rep, vol. 8, 2013.

[4] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson, J. Ra-
datz, M. Yee, H. Porteous, and F. Springsteel, IEEE standard computer
dictionary. IEEE Press, 1991.

[5] D. Gürdür and F. Asplund, “A systematic review to merge discourses:
Interoperability, integration and cyber-physical systems,” Journal of In-
dustrial information integration, vol. 9, pp. 14–23, 2018.

8


	Introduction
	sos Interoperability

	Simulation Environment
	Thermodynamic Simulation
	Control Model
	Control Loops

	Generated Dataset
	File structure


